#define PROBLEM "https://judge.yosupo.jp/problem/enumerate_primes"
#include "../../cpp/template/template.cpp"
#include "../../cpp/math/sieve-of-eratosthenes.cpp"
int main(){
int n,a,b;cin>>n>>a>>b;
SieveEratos P(n);
cout << P.primes.size() << " " << (P.primes.size()-b+a-1)/a << endl;
for(int i = b; P.primes.size() > i; i+=a){
if(i != b)cout << " ";
cout << P.primes[i];
}
cout << endl;
return 0;
}
#line 1 "cpp/z_test/yosupo-enumerate_primes.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/enumerate_primes"
#line 2 "cpp/template/template.cpp"
//yukicoder@cpp17
#include <iostream>
#include <iomanip>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <climits>
#include <cassert>
#include <string>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#include <map>
#include <random>
#include <bitset>
#include <complex>
#include <utility>
#include <numeric>
#include <functional>
using namespace std;
using ll = long long;
using P = pair<ll,ll>;
const ll MOD = 998244353;
const ll MODx = 1000000007;
const int INF = (1<<30)-1;
const ll LINF = (1LL<<62LL)-1;
const double EPS = (1e-10);
P ar4[4] = {{0,1},{0,-1},{1,0},{-1,0}};
P ar8[8] = {{-1,-1},{-1,0},{-1,1},{0,-1},{0,1},{1,-1},{1,0},{1,1}};
template <typename T> vector<T> make_vector(size_t a, T b) { return vector<T>(a, b); }
template <typename... Ts> auto make_vector(size_t a, Ts... ts) { return vector<decltype(make_vector(ts...))>(a, make_vector(ts...)); }
/*
確認ポイント
cout << fixed << setprecision(n) << 小数計算//n桁の小数表記になる
計算量は変わらないが楽できるシリーズ
min(max)_element(iter,iter)で一番小さい(大きい)値のポインタが帰ってくる
count(iter,iter,int)でintがiterからiterの間にいくつあったかを取得できる
*/
/* comment outed because can cause bugs
__attribute__((constructor))
void initial() {
cin.tie(0);
ios::sync_with_stdio(false);
}
*/
#line 4 "cpp/z_test/yosupo-enumerate_primes.cpp"
#line 1 "cpp/math/sieve-of-eratosthenes.cpp"
struct SieveEratos{
int N;
vector<int> minp;
vector<bool> t;
vector<int> primes;
map<int,int> invprimes;
SieveEratos(){}
SieveEratos(int n):N(n+1){
generate();
}
void set(int n){
N = n+1;
generate();
}
void generate(){
t.assign(N, true);
t[0] = t[1] = false;
for(int i = 2; N > i; i++){
if(t[i]){
primes.emplace_back(i);
for(int j = i+i; N > j; j+=i){
t[j] = false;
}
}
}
}
void generate_invprime(){
for(size_t i = 0; primes.size() > i; i++){
invprimes[primes[i]] = i+1;
}
}
void generate_minfactor(){
minp.assign(N, N+2);
minp[0] = minp[1] = -1;
for(int i = 2; N > i; i++){
if(minp[i] == N+2){
minp[i] = i;
for(int j = i+i; N > j; j+=i){
minp[j] = min(i, minp[j]);
}
}
}
}
bool operator[](int x){return t[x] == x;}
};
#line 6 "cpp/z_test/yosupo-enumerate_primes.cpp"
int main(){
int n,a,b;cin>>n>>a>>b;
SieveEratos P(n);
cout << P.primes.size() << " " << (P.primes.size()-b+a-1)/a << endl;
for(int i = b; P.primes.size() > i; i+=a){
if(i != b)cout << " ";
cout << P.primes[i];
}
cout << endl;
return 0;
}